Microwave-assisted HTC and gasification: Circular solutions for waste-to-Energy

J. Guerrero^{1*}, C. Aragón-Briceño¹, I. González García¹, W.D. Espinoza¹, R. Torres¹, C. Jarauta-Córdoba¹, S. Malinowski²

- ¹CIRCE Technology Centre, Av. Ranillas, 3D, 1°, 50018 Zaragoza
- ²Schwander Polska sp. z o.o. sp. k. Stadła 234, 33-386 Podegrodzie, Poland
- Corresponding author: jguerrero@fcirce.es

INTRODUCTION & METHODOLOGY

The Wood2Wood (W2W) project aims to valorise wood industry residues (sludges and wood waste) into H₂- and CO₂-rich syngas for further biochemical upgrading into detergents.

For so, a two-step strategy is being followed:

• MW-HTC: Converts high-moisture sludges (Paper & pulp industry sludge, PPS) into hydrochar.

WOOD2WOOD

• Fluidised-bed gasification: Converts hydrochar and waste wood into clean syngas, seeking for hydrogen and carbon dioxide maximization, for further fermentation steps.

This syngas is then subjected to a fermentation stage to produce dodecanol The key process parameters studied are:

- MW-HTC: residence time, temperature, solid %
- FB-Gasification: process temperatures, equivalence ratio, steam ratio

RESULTS

MW-HTC

FB GASIFICATION

HYDROCHAR GASIFICATION

Code	Bed temperature (°C)	Freeboard temperature (°C)	SR (%)	Steam flow (kg/kg)	CGE (%)	H2(%)	CO2(%)	CO (%)	CH₄(%)	LHV Gas (MJ/Nm ³)
W2W015	329.60	855.31	8.51%	0	57.82%	34.96%	10.88%	10.95%	22.93%	13.08
W2W016	476.92	872.41	12.00%	0	49.38%	23.26%	12.72%	10.69%	9.21%	7.16
W2W017	425.00	850.00	9.00%	0	36.00%	15.88%	13.85%	10.49%	12.68%	7.65
W2W018	343.67	826.96	3.90%	0.4	86.01%	37.19%	16.74%	13.98%	15.75%	11.43
W2W019	360.07	789.28	5.52%	0.6	69.39%	25.95%	15.38%	13.66%	17.44%	10.19

CONCLUSIONS

- Higher temperatures (225 °C) consistently reduced hydrochar yield due to increased solubilization of solids into the liquid phase.
- Longer residence times negatively affected hydrochar yield.

CIrce

- Hydrochar from PPS showed higher fixed carbon and lower ash content than from sewage sludge, making it a more promising feedstock for downstream gasification.
- Steam injection (0.4–0.6 kg/kg) significantly improved hydrogen yield, with up to 37.2%.
- Lower bed temperatures (~330-350°C) combined with high freeboard temperatures (>825°C) are optimal for H₂-rich syngas from hydrochar.
- The high ash content and low H/C ratio of hydrochar indicate steam gasification is more effective than air gasification for this feedstock.

A cascade valorisation approach combining MW-HTC and gasification is viable for treating moist wood-industry residues.

MW-HTC is an efficient method to convert wet sludges into hydrochar with improved energetic properties and reduced water retention. Fluidised-bed gasification of hydrochar produces syngas streams rich in H₂ and CO₂, meeting the needs of downstream microbial fermentation. Steam gasification enhances H₂ output compared to air gasification.

NEXT STEPS

Scale-up tests for MW-HTC experiments in 1-litre reactors and comparison with conventional HTC to assess microwave-specific benefits. Integrate a water–gas shift reactor to enrich syngas in H₂ and decrease CO content, tailored for microbial uptake.

